Carrier modulation layer-enhanced organic light-emitting diodes.
نویسندگان
چکیده
Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.
منابع مشابه
Effects of double layer AlN buffer layers on properties of Si-doped AlxGa1−xN for improved performance of deep ultraviolet light emitting diodes
Related Articles Influence of exciton lifetime on charge carrier dynamics in an organic heterostructure Appl. Phys. Lett. 102, 113304 (2013) Influence of exciton lifetime on charge carrier dynamics in an organic heterostructure APL: Org. Electron. Photonics 6, 52 (2013) Influence of internal absorption and interference on the optical efficiency of thin-film GaN-InGaN light-emitting diodes Appl....
متن کاملDirect evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes
Related Articles Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes Appl. Phys. Lett. 99, 143101 (2011) Efficiency droop behaviors of the blue LEDs on patterned sapphire substrate J. Appl. Phys. 110, 073102 (2011) Effect of organic bulk heterojunction as charge generation layer on the performance of tandem organic light-emitting diodes...
متن کاملInfluence of carrier-injection efficiency on modulation rate of organic light source.
We have investigated the relationship between the energy levels of an emissive layer and the modulation rate of organic light-emitting diodes (OLEDs) based on a distyrylbenzene derivative, 1,4-bis[2-[4-[N,N-di(p-tolyl)amino]phenyl]vinyl]benzene (DSB). By utilizing DSB as an emitting material, a high modulation rate can be realized because of the short fluorescence lifetime of 0.2 ns of DSB. Fur...
متن کاملThin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملHigh efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer
Ultrathin non-doped emissive layer (EML) has been employed in green phosphorescent top-emitting organic light-emitting diodes (TOLEDs) to take full advantages of the cavity standing wave condition in a microcavity structure. Much higher out-coupling efficiency has been observed compared to conventional doped EML with relatively wide emission zone. A further investigation on dual ultrathin non-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2015